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A quantitative study of the pion-nucleon vertex function with one nucleon off the mass shell is presented 
using dispersion-theoretical techniques. The discussion is based on the unitarity conditions for the vertex 
function and for the one-nucleon irreducible parts of the pion-nucleon scattering amplitudes with I — J—1/2. 
I t is shown in terms of the N/D method that the vertex function has a sharp maximum in the low-energy 
region. Its existence is found to be crucial for a certain inequality, which is due to the requirement of no ghosts 
in the theory, to be satisfied. The nucleon propagator is strongly suppressed at the energy of this maximum. 
Reasonable results obtained seem to suggest that ghosts are not present in pion physics, although the present 
calculation is still incomplete. The pion-nucleon vertex function with pion off the mass shell is also discussed 
and some early attempts are re-examined. The importance of a pole or a resonance-like behavior in this vertex 
is suggested. 

I. INTRODUCTION AND SUMMARY 

APART from perturbation expansion, which is 
certainly wrong for strong interactions, there 

does not seem to exist any widely accepted method of 
calculating the propagators of physical particles and 
their proper vertex functions. Although some non-
perturbational attempts1 '2 have been made on the 
basic Green functions, the ladder approximations 
adopted in these works are, even qualitatively, very 
inadequate. As will be seen later, the pion-nucleon vertex 
function of Federbush et al.,2 for example, badly 
violates the inequality of Lehmann, Symanzik, and 
Zimmermann3 (LSZ), which is essentially due to the 
requirement of no ghost states in a theory. 

The aim of the present work is to present a new 
method of studying the nucleon propagator and the 
pion-nucleon vertex function with one nucleon off the 
mass shell, in which we make repeated use of S-matrix 
theoretical techniques. Crucial to our approach are the 
two kinds of unitarity relations investigated in a 
previous work.4 

The P-wave pion-nucleon scattering amplitude with 
/ = / = J is divided into two parts, the contribution from 
the one-nucleon intermediate state with all the radia
tive corrections included and the rest which we call 
the one-nucleon irreducible term. The fact that the 
second term satisfies unitarity by itself4 enables us 
to calculate it in terms of the N/D method.5 I t is shown 
that the one-nucleon irreducible term has a resonance
like behavior in the low-energy region. In order to 
avoid confusion with ordinary resonances, our resonance 
will be called a pseudoresonance in this paper. By 
unitarity, the vertex function must have a resonance 
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behavior at the same energy. The existence of this 
pseudoresonance in the low-energy region turns out to 
be vital for the LSZ inequality to be satisfied. Although 
we had to make an arbitrary choice for the high-energy 
behavior of the phases of the vertex function, it should 
be mentioned that the contribution from the pion-
nucleon intermediate states to the LSZ sum rule comes 
dominantly from the low-energy region where we know 
more information is available. 

In Sec. I I we discuss general properties of the nucleon 
propagator and the pion-nucleon vertex function with 
one nucleon off the mass shell. In order to reduce the 
complication due to the spin of the nucleon, we shall 
take advantage of the Gell-Mann-Low form6 of the 
representation for the nucleon propagator. The results 
obtained in I for the pion case are extended to the 
nucleon case. 

In Sec. I l l we calculate the one-nucleon irreducible 
part of the P-wave scattering amplitude with I—J—\ 
in terms of the N/D method, in which the forces due 
to the nucleon exchange and the 3-3 isobar exchange 
are considered. We get a pseudoresonance at the 
energy w^m+2/jLy where w denotes the invariant total 
energy. The phase rjp(w) of this one-nucleon irreducible 
term is, by unitarity, equal to the phase rj+ (w) of the 
vertex function in the energy region m-\-ix<^w<m-\-2\x. 
The vertex function is then calculated in terms of an 
Omnes integral,7 by replacing rf+(w) with r\p{w) in the 
low-energy region and by assuming an arbitrary, but 
not unreasonable, behavior for ri+(w) in the high-energy 
region and for rj-(w), the phase of the vertex function 
on its left-hand cut. Numerical calculation shows that 
the pion-nucleon contribution to the LSZ sum rule is 
about 0.8, 0.73 from the right-hand cut and 0.07 from 
the left-hand cut, which leaves 0.2 to ZN plus the con
tributions from the inelastic states. The nucleon propa
gator in the low-energy region is then calculated from 
this vertex function. I t is found that the propagator is 
strongly suppressed at the pseudoresonance energy. 
Although our calculation is still very crude, reasonable 

6 M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954). 
7 R. Omnes, Nuovo Cimento 8, 316 (1958). 
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results obtained may suggest that pion physics does not 
have a ghost state. 

A few remarks are given in Sec. IV on some ap
proaches to the pion-nucleon vertex function T(s) 
with pion off the mass shell. In terms of the method of 
Geshkenbein and Ioffe8 and Meyman9 it is shown that 
we obtain an upper bound of about 2.0 on the pion-
nucleon coupling constant g2/^w(~15) if we neglect 
the cut of T (s) between 9/x2 and 4w2 and if T (s) has no 
poles in the s plane with the cut extending from 4w2 

to + 0 0 . I t follows that the T(s) of Federbush et al., 
for instance, makes the pion-nucleon contribution to 
the LSZ sum rule larger than 7.5 when g2/47r is given 
experimentally. This awful violation of the LSZ in
equality necessarily leads to a ghost state. The pre
scription of Redmond10 to eliminate ghosts is then dis
cussed. I t is found that his procedure introduces a pole 
in T(s), which strongly damps the original vertex in 
the physical region. However, the form factor K(s) 
remains unchanged and hence retains a ghost pole. 
Putting these considerations together, we conclude 
that the LSZ inequality requires a strong suppression 
of the vertex function, which may probably be caused 
by a pole or a pseudoresonance in T(s) lying below 4w2. 

In the Appendix we rederive the upper bound on the 
pion-nucleon coupling constant obtained by Geshken
bein and Ioffe (GI)8 from the LSZ inequality and some 
additional assumptions. The kinematics we have 
adoped in Sec. I I permit a considerable simplification 
of their original derivation and of their final expression. 
The reason for this is that we consider a single function 
of w with one subsidiary condition, while they did two 
functions of w2 with three conditions. 

II. GENERAL PROPERTIES OF THE NUCLEON 
PROPAGATOR AND OF THE PION-
NUCLEON VERTEX FUNCTION 

Much of what we discuss in this section is perhaps 
well known. However, we shall put an emphasis on a 
kind of reflection symmetry characteristic of the fermion 
case. For this purpose we make use of the Gell-Mann-
Low representation for the nucleon propagator,6 

-dw' 

the function 

1 1 r00 a+(w') 
iS'F(-ip) = + - / d 

m+ip 7r J m+fl w'+ip 

i r o-_(V) 
— / -dw', (2.1) 
7T Jm+uW' — ip 

which has a definite advantage in its physical clearness 
over others. Since 

(T±(W)>0 for w>m+fi, 

8 B . V. Geshkenbein and B. L. Ioffe, Zh. Eksperim. i Teor. 
Fiz. 44, 1211 (1963); 45, 555 (1963) [English transls.: Soviet 
Phys.—JETP 17, 820 (1963); 18, 382 (1964)]. 

9 N. N. Meyman, Zh. Eksperim. i Teor. Fiz. 44, 1228 (1963) 
[English transl.: Soviet Phys.—JETP 17, 830 (1963)]. 

10 P. J. Redmond, Phys. Rev. 112, 1404 (1958). 

1 1 f ° cr+(w/). 
iS'F(w) = 1— / dw' 

M—W 7T Jm+nW' — W 

1 r00 (7_0/) [ - 0 0 

-dw', (2.2) 
TT J m+n W'+W 

obtained by replacing — ip in Eq. (2.1) with w is a 
Herglotz function.11 We introduce a renormalization 
function by 

ZN-i(w)^SF'(w)/SF(w), (2.3) 

which is, by definition, normalized to unity at w=m, 
I t is easy to see that 

SF'(-ip)-SF~1(-ip) 

=^(p)ZN~1(w)+A„(p)ZN-i(-w), (2.4) 

where the A±(p) are the projection operators to positive 
and negative states, respectively: 

A±(p)=(w=Fip)/2w, (2.5) 

and w= ( - / ) 1 / 2 , with p2=pi2+p2
2+pz2-po2. Because 

of the Herglotz property of the propagator, Z^iw) 
can be written as 

w—m r°° r+(w') 
ZN{W) — \-\ • / dw' 

T Jm+liw'—w 

w—m r00 T-(W') Cn 

/ dw'+ (w~m) £ , (2.6) 
7T Jm+Iiw'+W n Wn — W 

where 
T± (w) 25 | ZN (dh w) | V ± (w) (2.7) 

and C w >0. The sum on the right-hand side of Eq. (2.6) 
represents Castillejo-Dalitz-Dyson (CDD) terms.11 

By taking the limit, | w \ —» co 9 we obtain the LSZ sum 
rule 

1 r00 

1 = - / [r+(w) + T„(w)yw+ZN+Y,Cn, (2.8) 
IT J m+n n 

where Zjy, 
ZJV== lim ZN(w), (2.9) 

is the nucleon wave-function renormalization constant 
and satisfies the inequalities 

1>ZN>0. 

By dropping off the non-negative terms from Eq. (2.8), 
we obtain 

1 r00 

1 > - / lr+(w) + r^(w)']dw, (2.10) 

11L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 
453 (1956). 
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from which it follows that 

Km WT±(W) = 0. (2.11) 

For completeness, we list here a formal expression 
for the bare mass mo of the nucleon12 in our notation: 

i w0= \tn-\- I w\jr+(w)—or^(w)~]dw 

X \jr+ (w)+a- (w) ~]dw 

= ZN\m+ / 
l J m-

W\JT+ (w) — (7_ {w)~]dw (2.12) 

It is easy to see that the bare mass is the average of w's 
with the weight function, 

d(w—m)+d(w—m—/z)o+(w)+0(—w—m—//)<T\_(|W|). 

In the lowest order perturbation theory the two spectral 

functions asymptotically become the same for large w: 

This asymptotic equality reduces the divergence of the 
self-mass of the nucleon from a linear to a logarithmic 
one. 

We express the form factor or the improper vertex 
function with one nucleon off the mass shell in the 
form 

u (pf) TaiyhK(—ip) = u (p') T«fy5[A+ (p)K (w) 
+A-(p)K(-w)l. (2.13) 

K(w) is normalized to g at w = m, where g2/4x= 15. The 
contributions to the spectral functions <r±(w) from the 
pion-nucleon intermediate states are then given by 

a±Nr(w) = 
3 p±(w) 

\K(±w)\2, (2.14) 
16T (w^m)2 

where 

P± (w) = (l(w){ (w =Fm)2—/x2} /w2 

= { {w^m)2-^Y'2 • { (wzkm)2-tx2}ll2/2wz 

= {l-C(m+M)/^]2}1 / 2{l-[(^-M)/^]2}1 / 2 

X{(^Tm)2-M2}/2w, (2.15) 

and q(w) is the center-of-mass momentum: 

q(w) = { (w-rn)2-ix2}ll2{ (w+m)2-ix2}^2/2w. (2.16) 
The numerical factor of 3 in Eq. (2.14) is due to isotopic 
spin. 

Now we define the proper vertex function by 

T(w)=ZN(w)K(w). (2.17) 

The contributions to T±(W) from the pion-nucleon 

12 H. Lehmann, Nuovo Cimento 11, 342 (1954). 

intermediate states are found to be 

3 p±(w) 
r±*'(w) = | r ( ± w ) | 2 . (2.18) 

16w (w^Fm)2 

Because of the LSZ inequality 

1 r00 

1>~ / £T+N*(w)+T-Nr(w)lidw9 (2.19) 
7T J m-j-/* 

which can be obtained from the inequality (2.10), we 
have 

]imwT±
N*(w) = Q, (2.20) 

and hence13 

lim r(dbw) = 0. (2.21) 

Next we discuss the unitary requirement on the 
proper and improper vertex functions. The partial-
wave amplitudes in the pion-nucleon scattering states 
with / = / = ! will be denoted by fp(w) and fs(w) for 
the P and S waves, respectively. By unitarity, they 
can be expressed in the form 

fp(w) = (ei8P smdP)/q, (2.22a) 

fs(w)=(e^Ssm8s)/q, (2.22b) 

where the phase shifts are real up to the first inelastic 
threshold, m+2jji. The unitarity also gives us the 
relations14 

lmK(w+) = q(w+)fP*(w+)K(w+), (2.23a) 

ImK(-w+) = q(-~w+)fp*(-w+)K(-w+), (2.23b) 

for wy w+/x<w<m+2/* , where w+=w-\-ie and e 
is an infmitesimally small positive number. By making 
use of the MacDowell relation15 

/ p ( _ w ) = - / f l ( w ) , (2.24) 

we can rewrite Eq. (2.23b) as 

ImK(-w+) = q{w+)fs*{w+)K{-w+). (2.23b') 

Here we have taken the cuts of q(w) in the w plane 
between — (m-\-fx) and — (m—\x) and between m—\x and 
m+fi, so that q(w) is real for w, \w\>m+n, and 
q(—w)==-—q(w) when w>m-{-iJi. 

By assuming ordinary analyticity for K(w), it can 
be expressed, apart from possible zeros, in the form 

K(w) = gexp\ 
Vw—m r" 

L 7T J m-

8+(w')dw' 

* m+fi (w,—m)(w/—w) 

w—m fw d-.(w')dwf 
r00 b-.(w')dw' -| 
/ > (2-

J mA-u. (w'+m)(w'+w)J 

25) 
T Jm+» (w' + m)(w'+w) 

13 E. Ferrari and G. Tona-Lasinio, Nuovo Cimento 10, 310 
(1958). 

14 S. Okubo, R. E. Marshak, and E. C. G. Sudarshan, Phys. 
Rev. 113, 944 (1959); I. Umemura and K. Watanabe, Progr. 
Theoret. Phys. (Kyoto) 29, 893 (1963). 

15 S. W. MacDowell, Phys. Rev. 116, 774 (1959). 
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where d+(w) and d-.(w) are the real phases of K(w) 
and K(—w) for w>m+ix, respectively, and we have 

b-{w)=bs{w), 

(2.26a) 

(2.26b) 

for Wy m-\-ix'^'w<m-\-2yL. 
Following the previous work, we divide the partial-

wave amplitudes into the two parts, the one-nucleon 
reducible term and the one-nucleon irreducible term: 

fp{w)--
3 (w—my—fj!^ 

167r w^ 

fs{w) = -

XV{w) V(:w)+gp{w), (2.27a) 
m—w 

3 (w+my—jji^ 

167r w"-

Zjsr^{—w) 
XT{~w) V{-w)+gs{w), (2.27b) 

The unitarity for the vertex function can be ex
pressed in terms of gp{w) and gs{w) as 

lmV(w^)=^q{w^)gP^{w^)V{w+), (2.28a) 

lmV{-w+)^q{w+)gs''{w^)T{-w+), (2.28b) 

for w, m+fjL<w<m+2iJL, which correspond to Eqs. 
(2.23a) and (2.23bO, respectively. We can also show 
that gp(w) and gs{w) satisfy the unitarity by them
selves. Therefore, we can write them as 

gp (w) = (e^^p sinryp)/^, (2.29a) 

gs(w) = (e^'fs smr]s)/q, (2.29b) 

where the phases, 7)P(W) and vsM, are real up to the 
first inelastic threshold. T(w) can be written in a form 
corresponding to Eq. (2.25), 

T(w) = gexp\ 
Fw—m r 

L T J n 

W — mj"^ ri-{w')dw' "1 
(2.30) 

apart from possible zeros and poles. Here we have 

'n+{w) = 'np{w), (2.31a) 

ri^{w)='ns{w), (2.31b) 

for Wy m+fjL<w<m-\-2fx. 
Although the phases of the fs and the g's become 

complex for w above w+2/z, their imaginary parts 
must be positive, because it follows from the unitarity 

condition that 

q\fpH\<l, q\gp(w)\<l, (2.32a) 

q\fs(w)\<l, q\gs(w)\<l, (2.32b) 

for w, w>m+/jL. We find from these inequalities and 
Eqs. (2.27a) and (2.27b) that 

\ZM(^W)\/\Y(±W)\' 

>(3g^/327r)p±iw)/(w^m), (2.33) 

for w, w>m+iJi, where Y(w) is defined by 

Y(w)^T(w)/g, 

Taking the Hmit, w—^ co, we obtain 

lim > (3/16)gV47r. 
^-=^|F(zhw)|2 

(2.34) 

(2.35) 

III. NUMERICAL CALCULATION OF THE VERTEX 
FUNCTION AND THE PROPAGATOR 

This section is devoted to a numerical analysis of the 
pion-nucleon vertex function with one nucleon off the 
mass shell as well as the nucleon propagator. We have 
seen in the previous section that in the low-energy 
region rj^(w) is essentially equal to the phase rip(w) 
of gp(w). Since gp(w) satisfies unitarity by itself, we 
will calculate it by the N/D method. 

Following Frautschi and Walecka,^^ we introduce a 
function defined by 

where 
hp(w) ^ (e'^'^p smr}p)/pp(w), (3.1) 

pp(w) = {mlixfp^(w). (3.2) 

The factor {mlixf is merely for easier correspondence 
with the nonrelativistic limit. The forces we consider 
here are due to the nucleon exchange and the Z-Z 
resonance exchange. For simplicity, we shall adopt pole 
approximation for these forces. We express hpiis)) in 
the form 

hp{w)=N{w)/D{w) (3.3) 
with 

pp{w')N{w') 
— d w ' , (3.4) 
-w) 

w—m r°° pp{w')N{u 
D(w)=^l / 

We approximate N{w) by 

where 

1 P 16 /*2 
N{w)== + D{wi), (3.5) 

3 w—m 9 w—wi 

/2=(^ /2w)Y/47r=0.08 . 

16 S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 
(1960). 
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For numerical calculation, we shall take the value 
0.68w for wi and use the relation^^ 

/*̂  = f/^ (3.6) 

The Eqs. (3.4) and (3.5) can easily be solved and 
the solution is given by 

D(w) = l-
p w—m — mr 

TT J r, 

-D(wi} 
16 f^^ w—m 

where 

TT 

pp{w')dw' 

r /^ m—wi r 
Diwi)^\ 1+ / 

L 3 T J n 

m+pi {w'—m)(w^—wi){w^--w) 

p m—wi f^ pp{w)dw 

(3.7) 

3 

X 

X 

1 — 

Im+n {w—mf{w~wi)-

16/*^ m—wi 

J m+ix {W — 

pp(w)dw 

m){w—wif' 
- 1 . 5 6 . (3.? 

The phase shift 'r]p{w) can be obtained from the 
expression 

pp{w)N(w) cotvp(w) = ReD(w). (3.9) 

The soHd part of the curve for v+iw) in Fig. 1 shows our 
numerical result for r?p(w). I t has a pseudoresonance 
at w, w^m+2AfjL. This resonance is different from 
ordinary ones in that it cannot dirrectly be observed by 
scattering experiments. However, it plays a very im
portant role in determining the behavior of the vertex 
function, as will be seen shortly. 

FIG. 1. The phases 
r}^(w) used to cal
culate Y(w). The 
solid part of the 
curve for v+iw) is 
equal to the r]p(w) 
calculated in terms 
of the N/D method. 

.2 .4 .6 .8 
(m + yLL)/w 

, - ^ / 4 

.2 .4 .6 
(m-»-/i-)/w 

FIG. 2. The behavior of | F(2e;) |. Its maximum is at the 
energy w~w+1.8/z. o; stands for m/(m+/i). 

As for the ^/-(w), it is essentially given in the low-
energy region by vsi'^), which is to be calculated by the 
N/D method. Unfortunately, a rehable calcualtion of 
rjsiw) is much more difficult to perform than that of 
rjp(w) is. In the / = / = | 5-wave state, the nucleon-
exchange and the 3-3 resonance-exchange terms to
gether give rise to a strongly attractive force. There is 
another term characteristic of our approach, which is 
due to the pseudoresonance. I t gives a strongly repul
sive force and largely diminishes the attractive force 
mentioned above. There should be more forces, the 
pion-pion force for example, which are important in 
the determination of 7)s(w), I t is beyond the scope of. 
the present work to investigate them quantitatively. 
We shall be satisfied in this paper by making an 
arbitrary choice for r}-(w) in the low-energy region. I t 
will be seen later, however, that the contribution to the 
LSZ sum rule from this region is very small. Although a 
dynamical calculation of r]-(w) is certainly desirable, 
we hope that our qualitative result will remain 
unchanged. 

We shall make the 7}p{w) calculated above replace 
r}+(w) in the energy range up to w+2.5/x, where the 
former shows flattening. We lack knowledge of the 
high-energy behaviors of rj+i'^) ^nd ri-{w). However, 
they should be such that they make the high-energy 
contribution to the LSZ sum rule small. Otherwise the 
LSZ inequality would be violated because, as it turns 
out, the low-energy contribution is large by itself. I t 
will be assumed that the phases of Y{w) become 
asymptotically the same in the high-energy region as 
those of YGI{W), which minimize the integral 

$ ( F ) 
4T Um+n {w—mf 

Y{w)\^dw 

J ri 

P-(^) 
Y(-w)\^dw\ . (3.10) 

17 D. Amati and S. Fubini, Ann. Rev. Nucl. Sci. 12, 359 (1962). 

m^^ (w+my 

A more detailed discussion of YGI(W) is given in the 
Appendix, which deals with finding an upper bound on 
the coupling constant. We mention here only that 
(gV47r)<l> gives the pion-nucleon contribution to the 
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then reduces to 

0 oc I 
w/(m+/x) 

FIG. 3. The behavior of |Zi\r(w) |. a stands for m/{m-\-ix). 

LSZ sum rule and hence must be smaller than unity 
(the LSZ inequahty). Our 'n+{w) and v-My which will 
be used to calculate T(w), are shown in Fig. 1. 

In calculating the vertex function from Eq. (2.30), 
we shall assume that it has neither zeros nor poles in 
the w plane with the cuts. The vahdity of the assump
tion is to be judged from the reasonableness of a result 
which follows. The r(ze^) thus obtained is shown in 
Fig. 2. I t has a sharp peak in the low-energy region of 
the right-hand cut, which is due to the pseudoresonance. 
Our primary concern is whether our T(w) satisfies the 
LSZ inequahty or not. We find 

1 /-^ 1 r«̂  

TT J m+fi "TT J mA-u 

= 0.73+0.07 

= 0.80. (3.11) 

We see that the LSZ inequality is satisfied. Our result 
leaves 0.20 to ZN plus the inelastic contributions in the 
LSZ sum rule. I t is to be mentioned here that most 
contribution in (3.11) comes from the T+(W) in the 
low energy region, where our T(w) is more rehable than 
elsewhere. 

What role does the pseudoresonance play in our 
calculation? If we do not accept the existence of the 
pseudoresonance in the low-energy region, then the 
original sharp peak of T (w) becomes a broad bump and 
the high-energy part of T(w) is considerably enhanced. 
This change makes the pion-nucleon contribution too 
large for the LSZ inequality to be satisfied. In other 
words, a pseudoresonance lying in the low-energy 
region removes ghosts from the theory. We agree with 
Frautschi^^ that a ghost probably results from inade
quate approximations. 

Finally we calculate ZN(I^) for w in the low-energy 
region, keeping only the pion-nucleon intermediate 
states in its absorptive part. We must also assume the 
nonexistence of CDD poles, which present an obstacle 
to any function theoretical approach. Equation (2.6) 

18 S. C. Frautschi, Regge Poles and S-matrix Theory (W. A. 
Benjamin and Company, Inc., New York, 1963), Sec. 2. 

Z^(^) = l + w T+ ^(w')dw' 

T J n w+M {w'+m){w^+w) 
(3.12) 

The result is shown in Fig. 3. ZN{W) has a sharp maxi
mum at almost the same energy as V{w) does. There
fore, the form factor 

K{W)==V{W)/ZN{W) (3.13) 

is almost constant (0.9^^1.1) in the low-energy region, 
say, between m and m+3fi. On the other hand, the 
nucleon propagator 

6*F' (W)=SF {W) /ZN (W) (3.14) 

is strongly damped in the pseudoresonance region. 
I t is not our aim to calculate the physical phase 

dp(w) by our method. Our result on 8p(w) will be given 
only as a measure to check our approximation. If we 
denote the phase of ZN(W) on the right-hand cut by 
P+(w)^ we see from Eq. (3.13) that 

5+(z^)==77+(^)-/?+(^), (3.15) 

which is, in the low-energy region, equivalent to 

8p(w) = r}p(w)—^^{w). (3.16) 

We find that the dp(w) thus calculated is negative, 
small, and almost constant (—3.5° to —5.5°) up to 
m+3jn, say. However, this result should not be taken 
too seriously, since 8p(w) is the difference of the two 
big terms. 

One remark will be appropriate before concluding 
this section. Our numerical result (3.11) is not incon
sistent with the assumption, ZN=0. If we determine 
the pion-nucleon coupling constant from the LSZ sum 
rule with this assumption and with the neglect of 
inelastic contributions, we shall obtain the value of 
around twenty for gV47r. 

IV. THE PION-NUCLEON VERTEX FUNCTION 
WITH PION OFF THE MASS SHELL 

Due to the extreme smallness of the pion mass, the 
pion-nucleon vertex function with pion off the mass 
shell is physically much more complicated than that 
with one nucleon off the mass shell studied in the pre
vious sections. I t seems necessary to have a survey of 
the former vertex function before we can start any 
dynamical analysis, which will not be attempted in the 
present work. We shall also re-examine some early 
approaches to this problem. 

First we show, by the use of the method of Geshken-
bein and loffe,^ that one obtains an upper bound of 
about 2.0 on the coupling constant g^/4:T if one neglects 
the cut of the vertex function T(s) between 9/x̂  and 
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4m,^ and if T (s) has no poles in the s plane with the cut 
extending from 4w^ to +00.19 Here s denotes the 
invariant energy squared. 

The LSZ inequality is gevin by 

where 

1 r°̂  
rNN {s)ds, 

r''"^(3) 

(4.1) 

(4.2) 
STT {3-fX^y 

and Y(s) is normalized to unity at 5=/x^, by 

Y(3)^Ti3)/T(fji'). (4.3) 

We write the inequality (4.1) in the form 

l>(gV47r)<l>(F), (4.4) 

3(l-4:m^/3) 
where 

$ ( F ) = -
TT J 4 4m' (s — fX^y 

\Y(3)\'d3. (4.5) 

We perform a conformal mapping 

(i-0y^^+i(x~iyi^ 
' 2 = -

{i-0yi^-i(x-i) 1/2 
(4.6) 

with x==3/4:m^ and ^= (fx/2my, which transforms the s 
plane with the cut from 4w^ to + 00 into the inside of 
the unit circle in the z plane, and the point s—fx^ to 
the origin 2 = 0 . Equation (4.5) can now be rewritten as 

* ( F ) = 
1 r 

IT Jo 
Yie'')\'p{d)de, (4.7) 

where Y is regarded as a function of z and p{d) is 
given by 

p(d) = ( l - a ) - i % ( l + ^ ) - i [ l + (1-I3)uj^^ (4.8) 

with 
«^=tan2((9/2). 

7(3) has the following properties: 

(4.9) 

(I) I t is analytic inside the unit circle, l^l = 1, with 
the exception of possible poles on the real axis between 
— 1 and 1 as well as the cut between Za and 1 due to 
the multipion intermediate states, where Za is the image 
of 3—9fjL^, and is given by 

( 1 - / 3 ) 1 / 2 - ( 1 - 9 ^ ) 1 / 2 
Za = ( -0 .01) (4.10) 

(1 - /3 )1 /2+( l -9 iS ) i /2 

(II) F(2*) = {F(z)}* for | 2 | < 1 . 

Hence Y(z) is real on the real axis between —1 and 2a-

1̂  A similar result has been independendy obtained by Meyman 
and Slavnov. N. N. Meyman and A. A. Slavnov, Phys. Letters 10, 
124 (1964). 

(I l l ) F(0) = 1. 

Let us introduce an auxiliary function defined by^^ 

r 1 r^ e'^+z n 
Z)(2) = exp — / lnp{\d\)de\. (4.11) 

I t is regular and nonvanishing inside the unit circle. 
I t can also be seen that D(2*) == {Z>(2)}* for 12] < 1 and 

\D{re^^)\^~^p{\e\) as f - > l - 0 . (4.12) 

Therefore, if we write 

Y(Z)=F(Z)YGI(Z) (4.13) 

with 

YGr(z)^D(0)/D(z), (4.14) 

Eq. (4.7) is expressed in the form 

HY) = {D{0)ri{F), (4.15) where 

Ir{F)^ 
1 f" 

= = - / \F(re^^[ ')\He, 0 < r < l (4.16) 

and I{F) stands for / i ( F ) . ^(2) has the same properties, 
(I), (II), and (III) , as F(2) does. 

We want to find the minimum of I{F) over the 
functions i^ (2) satisfying the following properties as well 
as (II) and ( I I I ) : 

(10 F{z) is regular inside the unit circle. 
(IV) F(z) belongs to the class Ẑ a.̂ o-̂ i 
(IV) means that the h'mit of It{F) as r—^1—0, 

which always exists, is finite: 

limIr{F) = l+ E \an\'<<^, (4.17) 
r-*!—0 n= l 

where anS are the coefficients of power series expansion 
oiF(z), 

F(z)=l+J:anz«. 

I t follows from (4.17) that 

I(F)^ \im Ir{F) 

(4.18) 

(4.19) 

and hence / ( F ) > 1 . Meyman^ showed that (IV) is 
satisfied if |F(2) | < e x p ( € / | l + 2 | ) for any €>0, or 
equivalently, if |r(ze^) | <exp(€W/2) for any € '>0 . 

Evidently the minimum of 1(F) is obtained when 
F(2) = l . In other words, $ ( F ) takes its minimum when 

2<* See, for instance, Ya. L. Geronimus, Polynomials Orthogonal 
on a Circle and Interval (Pergamon Press Inc., New York, 1960). 

21 The property (IV) is important (Ref. 9). If (IV) is replaced 
by the weaker property that F(Z) belongs to the class L2, which 
means only that / (F )<00 , we can show that for any 5>0 there 
always exists an F, FSL2 but F^H2t for which I{F)<8, and 
hence that «l>min=0. Note that Eq. (4.19) is not valid for such smF, 
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Y(z) is given by YGI(Z). We find that 

= exp - j ln^(^)^<91. (4.20) 
Lx Jo J 

It follows from (4.4) that 

(4.21) 

Substitution of Eq. (4.8) into Eq. (4.20) leads to the 
upper bound on the couphng constant given by 

gV47r<4( l -^) i /2[ l+( l - /5) i /2] - i . (4.22; 

The right-hand side is about 2.0, which is much smaller 
than the experimental value of 15 for g^/4:7r. This con
tradiction is^ as we beUeve, due to the unphysical re
quirement (10, which was used in place of (I) to derive 
(4.22). 

Federbush et alP' calculated the vertex function by 
the use of a ladder approximation with the force given 
by one-pion exchange between a nucleon-antinucleon 
pair. Since the F{z) corresponding to their V{s) has 
the properties (I ') , (H), (III) , and (IV), their calcula
tion encounters difficulty when g^/^Tr>2,0P If one 
takes the experimental value for g^/^w, their N-N 
contribution to the LSZ sum rule should be larger than 
7.5. A ghost results from this strong violation of the 
LSZ inequality. Addition of forces due to vector meson 
exchange cannot improve the situation at all. A strong 
suppression of their vertex function necessary to avoid 
ghosts can be caused only by a pole (or poles) in r(^) 
and/or the cut of r(^) between 9/̂ ^ and 4^^. 

I t might be interesting to recall at this point Red
mond's prescription to eliminate a ghost pole from the 
propagator, if it has one. Suppose we have a pion 
propagator, or equivalently, a ZT,{S) given by 

ZM = \-
S — jJi^ ris') 

TT JQH^S' — S 

-ds' (4.23) 

which leads to a ghost state. Z^(s) must have a ghost 
zero at ^o, ^O<M^J ^nd in place of the LSZ inequality we 
have 

1 r 
1 < - / 1 r(s)ds. (4.24) 

His procedure is to introduce a new function defined by 

1 ^ = 1 -
« • ( / ) 

where 

/ ds^ 
TT Jgtx^S^ — S 

cr(s)=\Z,(s)\-'T(s), 

(4.25) 

(4.26) 

22 Very recently Uehara determined the pion-nucleon coupling 
constant from the requirement Z,r = 0, using their vertex function. 
The value he obtained for g^/4Tr is about one, which satisfies the 
unphysical inequality (4.22) as it should. M. Uehara, Progr. 
Theoret. Phys. (Kyoto) (to be pubHshed). 

I t is easy to see that Z^TR (S) has neither zeros nor poles 
below jji^. We can eliminate the ghost pole in the original 
propagator by replacing Z^^is) with this new function 
ZrR(s). To see the effect of this replacement more 
clearly, we rewrite Eq. (4.25) in the form 

Z^R(S)=1-
-M^ r TR is') 

(4.27) 

apart from possible CDD terms, where 

TR{S)= \Z^R{S)\^CF{S) 

= \Z.R{S)/Z,{S)\'T{S), 

Since Z^R does not have a ghost zero by its construction, 
we have the LSZ inequality, 

(4.28) 

1 /-"̂  

TT . / 9 u 

1 ^ - / TR{s)ds. (4.29) 

I t will be noted that the original r(^) has been changed 
to a new function given by 

VR(S) = IZ.R{S)/Z,{S)1T{S). (4.30) 

If Redmond's procedure is applied to the r(^) of 
Federbush et aL, for instance, the new vertex function 
TR(S) has a pole at the original ghost energy ^o, because 
Z^(so)=0, Z^R(S0)9^0, and T(s0)9^0, We see that the 
LSZ inequality is made satisfied by this new pole in 
TR(S). 

Everything sounds all right up to this point. If we 
look at the form factor, however, we find it remains 
unchanged and still retains a ghost pole. Indeed, we have 

KR(S)^TR(S)/ZTR(S) 

==T(s)/Z,(s)^K(s). (4.31) 

After all, the present author feels that a true theory 
should not need a remedy for ghosts. In fact, it seems 
that all the ghosts we know result either from defects 
of a theory (the Lee model,^^ for instance) or from 
inadequate approximations. 

Possible necessity of a subtraction for the propagator 
of a nonrelativistic bound state, and hence of a pole in 
its vertex function with the bound state off the mass 
shell, was first suggested by Goebel and Sakita.^^ I t 
was shown in I that this is indeed the case for a non
relativistic bound state under some general conditions. 
We should be careful, however, in extending non
relativistic results to a relativistic case, especially when 
they depend much on nonrelativistic kinematics. I t 
seems better to proceed by assuming no subtraction for 
the pion propagator until we encounter an insurmount
able difficulty, which we hope will not exist although we 
cannot be certain. This assumption forbids r(^) to 
have a pole below /x̂ . Since it cannot have poles above 

23 T. D. Lee, Phys. Rev. 95, 1329 (1954). 
24 C. J. Goebel and B. Sakita, Phys. Rev. Letters 11, 293 (1963). 
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4m^ by unitarity,^ a pole (or poles) in r(^) can only 
appear in the interval fji^<s<4:m^. We should not dis
miss another interesting possibility that r(^) has a 
pseudoresonance between 9^^ and 4^^. 

To summarize, the LSZ inequality requires a strong 
suppression of the vertex function for ^ above 4w^, 
which we conjecture is caused possibly by a pole in 
r(^) at s, fjL^<s<4:m^, and perhaps more likely by a 
pseudoresonance in T(s) at s, 9ix^<s<^m^, 
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APPENDIX: THE GESHKENBEIN-IOFFE UPPER 
BOUND IN THE FERMION CASE 

We shall rederive here the upper bound on the cou
pling constant obtained by Geshkenbein and loffe^ (GI) 
in the fermion case, because their original derivation, 
which seems somewhat cumbersome in this case, can 
be considerably simplified. We shall also give an ex
plicit expression for the vertex function which minimizes 
the integral $ given below. 

We write the LSZ inequality, (2.19), in the form 

If we put z—e''^ on the unit circle, x is given by 

a ; = [ l + a + ( l - « ) ^ ] [ l + a - ( l - a ) ^ ] - ! , (A4) 

with^=tan2(<9/2). 
Equation (A2) can now be written in the form 

where 

p{e)^\i 

HY) 

{\-af 

1 /•' 

T Jo 
\Y{e^>)\''p{e)d0, (AS) 

X-
I l + a - {\-a)u\l\+a+i\-a)uJ 

(A6) 

Since p(d) is singular at u= ( l + a ) / ( l — a ) , which cor
responds to infinite w, it is convenient to make the 
transformation, 

F(3)=(l+2az+22)- i /2F(2) , 

p{e) = 2{\+u)-^\\+a- {\.-a)u\p{e) 

3 (l-aY / iu Y 

2 ( H - a ) i « \ l + M / 

(A7) 

X-

where 
l > ( g V 4 x ) $ ( F ) , (Al) 

[ l + a + ( l - a ) M ] ' 

Equation (AS) is rewritten as 

$ ( F ) 
p+(w) 

1 r 

TT Jo 
^)\^p{e)de. 

(A8) 

(A9) 

m+ix {w—mY 
Y{w)\'^dw 

(w-\-iny 

As we did in Sec. IV we introduce the function D(z), 

Y{-w)\'dw\ , (A2) D{z) = exJ— f Unp(\e\)dd], (AlO) 

Y{w) is analytic in the complex w plane with the two 
cuts extending from m+zx to + oo and from •— (m+ju) 
to — 00, is real on the real axis between the two cuts, 
and is normalized to unity at w—m. We make the 
conformal mapping 

with x=w/(m+/x) and a—m/(m+n). I t maps the w 
plane with the two cuts into the inside of the unit circle 
in the z plane, and the point w=m to the origin 2=0 . 

which is explicitly given by 

D(z) = (3/2)i /2(l-«) ( l+a)-^/ ' [2V(l+^^)T 

Xl(l+ay''+(l-ayihJ-\ (All) 

where t;= (l-—2;)/(l+z). 
Since the remainder of the argument goes almost the 

same as in Sec. IV, we shall not repeat it here. The 
minimum of the $'s over the F's having no poles inside 
the unit circle [and satisfying the other properties 
corresponding to (II) , (III) , and (IV) in Sec. I V ] is 
obtained when Tiz) is given by FGI(2;), 

?oi(z)^D(0)/D(z). (A12) 
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We also find that 

= expl- j lnp(e)dd] 

16 

(A13) 
ra"2+(l+a)i/2-i3 

This result coincides with that of Geshkenbein and 
loffe, although theirs might seem much more complex 
at first sight."' It follows that 

16 
gV47r<$n. in- '=—(l-a) -V"+( l+a)-"2( l -a) ] - i 

3 
r H - ( l - a 2 ) i / 2 - , 3 

X . (A14) 

Lai/2+(l+a:)i/2j 

For the observed mass ratio we have 

gV4ir<85, or f<0A7. 
(A15) 

25 Their equation (18) for #min in the article, B. V. Geshkenbein 
and B. L. loffe, Phys. Rev. Letters 11, 55 (1963), has two un
fortunate misprints. Equation (A13) should be compared with 
their result given in their first paper cited in Ref. 8. 

In Sec. I l l we have assumed that the phases of Y(w) 
become asymptotically the same in the high-energy 
region as those of FGI(W), which is given as a function 
of z by 

= (l+2az+z^yf'lD(0)/D(z)2. 
(A16) 

A plausible reason for this assumption has been given 
there, although it is open to criticism. It is to be noted 
here that YGI(Z) does not have correct threshold be
havior at :s=dbl. Indeed, it becomes infinite at these 
points. This defect should be cured by the function 

F(Z) = Y(Z)/YGI(Z). (A17) 

However, such a healing necessarily increases the 
integral $. Therefore, if the GI bound were only slightly 
larger than the experimental value of gV^ r̂, introduction 
of a pole to the vertex function would be almost impera
tive. Fortunately this is not the case. That is why we 
have assumed no poles in Tiw) in Sec. III. The reason
able result we have obtained seems to be in favor of the 
assumption. 

In this connection, it is interesting to recall that in 
the nonrelativistic deuteron problem the GI bound 
(0.19) is very close to the deuteron-nucleon coupling 
constant (0.16) determined from low-energy scattering 
parameters. Indeed, it can be shown that the deuteron 
vertex function has a pole, which is due to a zero of the 
deuteron propagator.̂ ^•'* 


